Previously, we introduced and discussed the Parquet file format and SQL Server and why it is an ideal format for storing analytic data when it does not already reside in a native analytic data store, such as a data lake, data warehouse, or an Azure managed service.
Both Python and the Parquet file format are quite flexible, allowing for significant customization to ensure that file-related tasks are as optimal as possible. Compatibility with other processes, as well as keeping file sizes and properties under control will also be introduced here.
Click through for some examples.