Press "Enter" to skip to content

The Importance of Proper Data Modeling in Power BI

Paul Turley avoids “big, wide tables”:

Power BI is architected to consume data in a dimensional model, with narrow fact tables and related dimensions. Introducing a big, wide table in a tabular model is extremely inefficient. It takes up space and memory resources, impacts performance, and complicates measure coding. Flattening records into a flat table is one of the worst things you can do in Power BI and a common mistake made by novice Power BI users.

This is a conversation I’ve had with many customers. We want our cake, and we want to eat it too. We want to have all the analytic capabilities, interactivity and high performance but we also want the ability to drill-down to a lot of details. What if we have a legitimate need to report on transaction details and/or a large table with many columns? It is well-known that the ideal shape is a star schema but what if we need to shape data for detail reporting? The answer is that you can have it both ways, but just not in one table.

Read on for a better model design (hint: the Kimball style) as well as several tips and tricks.