Hauke Mallow does some data engineering:
We often see customer scenarios where historical data has to be migrated to Azure Data Explorer (ADX). Although ADX has very powerful data-transformation capabilities via update policies, sometimes more or less complex data engineering tasks must be done upfront. This happens if the original data structure is too complex or just single data elements being too big, hitting data explorer limits of dynamic columns of 1 MB or maximum ingest file-size of 1 GB for uncompressed data (see also Comparing ingestion methods and tools) .
Let’s think about an Industrial Internet-of-Things (IIoT) use-case where you get data from several production lines. In the production line several devices read humidity, pressure, etc. The following example shows a scenario where a one-to-many relationship is implemented within an array. With this you might get very large columns (with millions of device readings per production line) that might exceed the limit of 1 MB in Azure Data Explorer for dynamic columns. In this case you need to do some pre-processing.
Click through to see how you can do this with an Azure Synapse Analytics Spark pool prior to ingesting it with a Data Explorer pool.
Comments closed