Blayze Stefaniak, et al, architect a service to provide data via Amazon Athena:
Customers tell us they are finding new ways to make effective use of their data assets by providing data as a service (DaaS). In this post, we share a sample architecture using parameterized queries applied in the form of a DaaS application. This is helpful for many types of organizations, whether you’re working with an enterprise making data available to other lines of business, a regulator making reports available to your industry, a company monetizing your data assets, an independent software vendor (ISV) enabling your applications’ tenants to query their data when they need it, or trying to share data at scale in other ways. In DaaS applications, you can provide predefined queries to run against your governed datasets with values your users input. You can expand your DaaS application to break away from monolithic data infrastructure by treating data as a product (DaaP) and providing a distribution of datasets, which have distinct domain-specific data pipelines. You can authorize these datasets to consumers in your DaaS application permissions. You can use Athena parameterized queries as a way to predefine your queries, which you can use to run queries across your datasets, and serve as a layer of protection for your DaaS applications. This post first describes how parameterized queries work, then applies parameterized queries in the form of a DaaS application.
Click through to learn how.