Press "Enter" to skip to content

Defining Data Quality

Ust Oldfield notes the importance of data quality:

We can safely assume this because a lot of organisations do not have data quality at the top of the priority lists. Why might this be the case? Because monitoring data quality and correcting poor quality data is hard. If it was easy, every organisation would have a strategy and method for tracking and improving data quality.

Often, inertia – driven by an overwhelming amount of information to the risks – sets in as it’s difficult to know where to start. So, where do you start?

I’d say there’s an incentive alignment problem with data quality: organizations want it but not enough that they’d trade anything else for it. And agents within the organization consider data quality a chore, so they’re looking for the minimum viable path. Then, for end users, we consider it even more of a chore (or a nuisance). Furthermore, I’m one of those end users who will put in fake data if I can get away with it on the principle that I don’t want you to have my personal information because you’re probably going to sell it or lose it.