I continue a series on Azure ML:
We ended the prior series with model deployment via the Azure ML Studio UI. This is entirely manual and UI-driven. Then, we looked at model deployment via manually-run notebooks. This is still manual but at least offers the possibility of automation as we control the code to run.
From there, we moved to model deployment via the Azure CLI and Python SDK. Now we have the capability to run, train, register, and deploy models via scripts. This leads to the next phase in the process, in which we can perform continuous integration and continuous deployment of models using a tool like Azure DevOps or GitHub Actions. This is where MLOps starts to shine.
Read on for a few thoughts about MLOps and software maturity.