Contrasting Logistic Regression and Decision Trees

Shital Katkar explains cases when you might use logistic regression or decision trees for classification problems:

Categorical data works well with Decision Trees, while continuous data work well with Logistic Regression.

If your data is categorical, then Logistic Regression cannot handle pure categorical data (string format). Rather, you need to convert it into numerical data.

Each algorithm has its own uses and assumptions.

Related Posts

Calculating AUC in R

Andrew Treadway shows how you can calculate Area Under the Curve in R: AUC is an important metric in machine learning for classification. It is often used as a measure of a model’s performance. In effect, AUC is a measure between 0 and 1 of a model’s performance that rank-orders predictions from a model. For […]

Read More

Python versus R (Again)

Alex Woodie looks at whether Python is dominating R in the data science space: There is some evidence that Python’s popularity is hurting R usage. According to the TIOBE Index, Python is currently the third most popular language in the world, behind perennial heavyweights Java and C. From August 2018 to August 2019, Python usage surged […]

Read More

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Categories

August 2019
MTWTFSS
« Jul  
 1234
567891011
12131415161718
19202122232425
262728293031