Data Layout in R with cdata

John Mount takes us through a few sample problems and how to reshape data with cdata:

This may seem like a lot of steps, but it is only because we are taking the problems very slowly. The important point is that we want to minimize additional problem solving when applying the cdata methodology. Usually when you need to transform data you are in the middle of some other more important task, so you want to delegate the details of how the layout transform is implemented. With cdata the user is not asked to perform additional puzzle solving to guess a sequence of operators that may implement the desired data layout transform. The cdata solution pattern is always the same, which can help in mastering it.

With cdata, record layout transforms are simple R objects with detailed print() methods- so they are convenient to alter, save, and re-use later. The record layout transform also documents the expected columns and constants of the incoming data.

Check it out.

Related Posts

Exploratory Data Analysis with inspectdf

Laura Ellis continues a dive into Exploratory Data Analysis, this time using the inspectdf package: I like this package because it’s got a lot of functionality and it’s incredibly straightforward to use. In short, it allows you to understand and visualize column types, sizes, values, value imbalance & distributions as well as correlations. Better yet, […]

Read More

MRAN Changes and a Survey

David Smith discusses potential changes to MRAN: As CRAN has grown and changes to packages have become more frequent, maintaining MRAN is an increasingly resource-intensive process. We’re contemplating changes, like changing the frequency of snapshots, or thinning the archive of snapshots that haven’t been used. But before we do that we’d  like to hear from […]

Read More

Categories

April 2019
MTWTFSS
« Mar May »
1234567
891011121314
15161718192021
22232425262728
2930