Data Layout in R with cdata

John Mount takes us through a few sample problems and how to reshape data with cdata:

This may seem like a lot of steps, but it is only because we are taking the problems very slowly. The important point is that we want to minimize additional problem solving when applying the cdata methodology. Usually when you need to transform data you are in the middle of some other more important task, so you want to delegate the details of how the layout transform is implemented. With cdata the user is not asked to perform additional puzzle solving to guess a sequence of operators that may implement the desired data layout transform. The cdata solution pattern is always the same, which can help in mastering it.

With cdata, record layout transforms are simple R objects with detailed print() methods- so they are convenient to alter, save, and re-use later. The record layout transform also documents the expected columns and constants of the incoming data.

Check it out.

Related Posts

WVPlots

Nina Zumel announces a new version of WVPlots on CRAN: WVPlots was originally a catch-all package of ggplot2 visualizations that we at Win-Vector tended to use repeatedly, and wanted to turn into “one-liners.” A consequence of this is that the older visualizations had our preferred color schemes hard-coded in. More recent additions to the package sometimes had palette […]

Read More

Icon Maps in R

Laura Ellis shows how you can build maps full of little icons: That was ok, but we should try to make the images more aesthetically pleasing using the magick package. We make each image transparent with the image_transparent() function. We can also make the resulting image a specific color with image_colorize(). I then saved the […]

Read More

Categories

April 2019
MTWTFSS
« Mar May »
1234567
891011121314
15161718192021
22232425262728
2930