Aspect-Based Sentiment Analysis

Federico Pascual explains aspect-based sentiment analysis and then shows how to implement it with MonkeyLearn:

Imagine you have a large dataset of customer feedback from different sources such as NPS, satisfaction surveys, social media, and online reviews. Some positive, some negative and others that contain mixed feelings. You’d use sentiment analysis to classify the polarity of each text, right? After all, it’s already proven to be a highly efficient tool.

But, what if you wanted to pick customer feedback apart, hone in on the details, get down to the nitty-gritty of each review for a more accurate analysis of your customers’ opinions?

Cue aspect-based sentiment analysis (ABSA). A text analysis technique that breaks down text into aspects (attributes or components of a product or service) and allocates each one a sentiment level. This technique can help businesses become customer-centric, which means putting their customers at the heart of everything they do. It’s about listening to their customers, understanding their voice, analyzing their feedback and learning more about customer experiences, as well as their expectations for products or services.

Click through for the demo.

Related Posts

The Costs of Specialization within Data Science

Eric Colson argues in favor of data science generalists rather than specialists: But the goal of data science is not to execute. Rather, the goal is to learn and develop profound new business capabilities. Algorithmic products and services like recommendations systems, client engagement bandits, style preference classification, size matching, fashion design systems, logistics optimizers, seasonal trend detection, and more can’t be […]

Read More

Accidentally Building a Population Graph

Neil Saunders shares an example of a newspaper headline which ultimately just shows us population sizes: Some poking around in the NSW Transport Open Data portal reveals how many people enter every Sydney train station on a “typical” day in 2016, 2017 and 2018. We could manipulate those numbers in various ways to estimate total, unique […]

Read More

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Categories

March 2019
MTWTFSS
« Feb  
 123
45678910
11121314151617
18192021222324
25262728293031