Robust Regressions in R

Michael Grogan shows how you can find and re-weigh outliers when performing regressions:

A useful way of dealing with outliers is by running a robust regression, or a regression that adjusts the weights assigned to each observation in order to reduce the skew resulting from the outliers.

In this particular example, we will build a regression to analyse internet usage in megabytes across different observations. You will see that we have several outliers in this dataset. Specifically, we have three incidences where internet consumption is vastly higher than other observations in the dataset.

Let’s see how we can use a robust regression to mitigate for these outliers.

Click through for a demonstration.

Related Posts

Dependencies as Risks

John Mount makes the point that packages dependencies are innately a risk: If your software or research depends on many complex and changing packages, you have no way to establish your work is correct. This is because to establish the correctness of your work, you would need to also establish the correctness of all of […]

Read More

Custom ggplot2 Fonts

Daniel Oehm shares two techniques for using custom fonts in your ggplot2 visuals: ggplot – You can spot one from a mile away, which is great! And when you do it’s a silent fist bump. But sometimes you want more than the standard theme. Fonts can breathe new life into your plots, helping to match […]

Read More

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Categories

February 2019
MTWTFSS
« Jan Mar »
 123
45678910
11121314151617
18192021222324
25262728