Handling Definitional Changes In Predictive Variables

Vincent Granville explains how you can blend two different definitions of a variable of interest together:

The reasons why scores can become meaningless over time is because data evolves. New features (variables) are added that were not available before, the definition of a metric is suddenly changed (for instance, the way income is measured) resulting in new data not compatible with prior data, and faulty scores. Also, when external data is gathered across multiple sources, each source may compute it differently, resulting in incompatibilities: for instance, when comparing individual credit scores from two people that are costumers at two different banks, each bank computes base metrics (income, recency, net worth, and so on) used to build the score, in a different way. Sometimes the issue is caused by missing data, especially when users with missing data are very different from those with full data attached to them.

Click through for a description of the approach and links showing how it works in practice.

Related Posts

The Costs of Specialization within Data Science

Eric Colson argues in favor of data science generalists rather than specialists: But the goal of data science is not to execute. Rather, the goal is to learn and develop profound new business capabilities. Algorithmic products and services like recommendations systems, client engagement bandits, style preference classification, size matching, fashion design systems, logistics optimizers, seasonal trend detection, and more can’t be […]

Read More

Accidentally Building a Population Graph

Neil Saunders shares an example of a newspaper headline which ultimately just shows us population sizes: Some poking around in the NSW Transport Open Data portal reveals how many people enter every Sydney train station on a “typical” day in 2016, 2017 and 2018. We could manipulate those numbers in various ways to estimate total, unique […]

Read More

Categories

February 2019
MTWTFSS
« Jan Mar »
 123
45678910
11121314151617
18192021222324
25262728