Where Machine Learning And Econometrics Collide

Dave Giles shares some thoughts on how machine learning and econometrics relate:

What is Machine Learning (ML), and how does it differ from Statistics (and hence, implicitly, from Econometrics)?

Those are big questions, but I think that they’re ones that econometricians should be thinking about. And if I were starting out in Econometrics today, I’d take a long, hard look at what’s going on in ML.

Click through for some quick thoughts and several resources on the topic.

Related Posts

Conjoint Analysis In R

Abhijit Telang introduces the concept of conjoint analysis and shows how you can implement this in R: We will need to typically transform the problem of utility modeling from its intangible, abstract form to something that is measurable. That is, we wish to assign a numeric value to the perceived utility by the consumer, and […]

Read More

Bayesian Modeling Of Hardware Failure Rates

Sean Owen shows how you can use Bayesian statistical approaches with Spark Streaming, using the example of hard drive failure rates: This data doesn’t arrive all at once, in reality. It arrives in a stream, and so it’s natural to run these kind of queries continuously. This is simple with Apache Spark’s Structured Streaming, and proceeds […]

Read More


January 2019
« Dec Feb »