Press "Enter" to skip to content

Day: December 6, 2018

Preventing Credential Compromise When Using AWS

Will Bengtston walks us through techniques Netflix uses to protect credentials in AWS:

Scope

In this post, we’ll discuss how to prevent or mitigate compromise of credentials due to certain classes of vulnerabilities such as Server Side Request Forgery (SSRF) and XML External Entity (XXE) injection. If an attacker has remote code execution (RCE) or local presence on the AWS server, these methods discussed will not prevent compromise. For more information on how the AWS services mentioned work, see the Background section at the end of this post.

Protecting Your Credentials

There are many ways that you can protect your AWS temporary credentials. The two methods covered here are:

  • Enforcing where API calls are allowed to originate from.

  • Protecting the EC2 Metadata service so that credentials cannot be retrieved via a vulnerability in an application such as Server Side Request Forgery (SSRF).

Read the whole thing if you’re an AWS user.

Comments closed

Indexed View Matching

Erik Darling has a series of posts on indexed views, with the latest covering query matching even when using a keyword in creation of the indexed view itself:

There are a whole bunch of limitations in creating indexed views. One of them is that you can’t base the query on DISTINCT.

Fair enough, but you can do GROUP BY.

And what’s pretty cool is that the optimizer can match a query written to find distinct values to an indexed view with a group by.

Click through for the best example ever.

Comments closed

Continuing The Advent Of Code In T-SQL

Wayne Sheffield has a few more posts in the Advent of Code series.  His latest edition:

In Day 5, we find ourselves working with the polymers of the new Santa suit. A polymer (the input file), consists of units, represented by upper and lower case letters. Adjacent units of the same letter, but of different polarity (case), cancel each other out. This may lead to other units that can then cancel each other out. The goal is to reduce the polymer to as small as possible, and report back the reduced size.

Tasks:

  1. Perform a case-sensitive search/replace for each letter of the alphabet. The search is for a pair of the same letter, where one is upper case, and the other is lower case.
  2. Recursively perform this operation until the string can no longer be reduced.

In my opinion, the key part to this is that the operation needs to be performed recursively. I can think of only two ways to recursively perform an operation in SQL Server:

  1. A recursive common table expression (cte).
  2. Using a WHILE loop.

I don’t like using either of these mechanisms in SQL Server – they both perform operations in a “Row-By-Agonizing-Row” method, instead of a more set-based approach. However, set-based recursion usually performs extremely poorly. So, I’m going to use a while loop.

The recursion requirement does limit things a bit; otherwise I could see putting something together with the LEAD() window function.

Comments closed

Cross-Availability Group Login Management

David Fowler walks us through a problem about orphaned users and Availability Groups:

Now, I’m pretty sure that most of us will have been in the position where, after a fail-over we get inundated with calls, emails, Skype messages and carrier pigeon drops letting us know that so and so can no longer access the database.

When you look into it, you either find that the login never existed in the first place, so you create it or that it was there but the database user has become orphaned from it (happens when the login SID doesn’t match the SID of the database user, Adrian wrote about orphaned users in Dude where’s my access?).

You remap the orphaned user and everything is good again…  that is until the next time you failover and once again you’ll be hit with the same orphaned user problem.

Click through for the explanation and a permanent fix for this issue.

Comments closed

Connecting Power BI To Dockerized SQL Server

Chris Taylor shows us how to build a SQL Server on Linux Docker container and use it to supply data to a Power BI dashboard:

I (and many others) have done a series of docker blog posts over the last couple of years but they’ve all tended to evolve around spinning up a SQL Server 2017+ container for testing or demo purposes. This is only really the start, think of the bigger picture here, once you have your database environment the world is your oyster.

This blog post will show how we can use SQL Server 2019 CTP2.1 running on Linux (Ubuntu) in a docker container as our data source for a Power BI environment in next to no time!

These steps show a very manual process for completing this setup, if it is something you are looking to do frequently then I suggest creating a Dockerfile and/or yml file and use docker-compose. This way you can have all your setup in one file and it will be a single statement to get your SQL Server 2019 environment up and running.

Read on for the demo.

Comments closed