Working With Strings In Base R

Kevin Feasel



Jozef Hajnala shows us that you don’t need stringr to do cool things with strings in R:

This post is aimed to serve as an overview of functionality provided by base R to work with strings. Note that the term “string” is used somewhat loosely and refers to character vectors and character strings. In R documentation, references to character string, refer to character vectors of length 1.

Also since this is an overview, we will not examine the details of the functions, but rather list examples with simple, intuitive explanations trading off technical precision.

As much as I like the tidyverse for its data platform professional-friendly approach to R, it is good to know the base libraries (and other alternatives) as well.  H/T R-Bloggers

Related Posts

From Excel to R: Three Examples

Abdul Majed Raja has a few examples of things which are easy to do in Excel and how you can do them in R: Create a difference variable between the current value and the next valueThis is also known as lead and lag – especially in a time series dataset this varaible becomes very important in feature engineering. In […]

Read More

Calculating AUC in R

Andrew Treadway shows how you can calculate Area Under the Curve in R: AUC is an important metric in machine learning for classification. It is often used as a measure of a model’s performance. In effect, AUC is a measure between 0 and 1 of a model’s performance that rank-orders predictions from a model. For […]

Read More


November 2018
« Oct Dec »