Strategies For Dealing With Failed Projects

Edwin Thoen gives us a few tips for dealing with failing data science projects:

At the beginning of a project the levels enthusiasm and optimism are always at its peak. Especially in data science projects. Isn’t data the new oil? This is the time we are finally going to dig into that well and leverage our data in unprecedented ways! No setbacks are experienced yet. There is only one road ahead and it will lead us to success. Probably at this stage you, the data scientist, are already well aware of a number of project risks. You might want to keep these concerns to yourself, as you don’t want to come across as negative, or worse, someone who is not up to the job ahead. Please don’t, if you foresee possible problems at this stage and you don’t speak out, they can come back as a boomerang when the problems actually occur. Rather, invite all stakeholders to perform a risk analysis together.

This is good advice and applies outside of data science projects as well.  H/T R-bloggers

Related Posts

The Costs of Specialization within Data Science

Eric Colson argues in favor of data science generalists rather than specialists: But the goal of data science is not to execute. Rather, the goal is to learn and develop profound new business capabilities. Algorithmic products and services like recommendations systems, client engagement bandits, style preference classification, size matching, fashion design systems, logistics optimizers, seasonal trend detection, and more can’t be […]

Read More

Accidentally Building a Population Graph

Neil Saunders shares an example of a newspaper headline which ultimately just shows us population sizes: Some poking around in the NSW Transport Open Data portal reveals how many people enter every Sydney train station on a “typical” day in 2016, 2017 and 2018. We could manipulate those numbers in various ways to estimate total, unique […]

Read More


November 2018
« Oct Dec »