Strategies For Dealing With Failed Projects

Edwin Thoen gives us a few tips for dealing with failing data science projects:

At the beginning of a project the levels enthusiasm and optimism are always at its peak. Especially in data science projects. Isn’t data the new oil? This is the time we are finally going to dig into that well and leverage our data in unprecedented ways! No setbacks are experienced yet. There is only one road ahead and it will lead us to success. Probably at this stage you, the data scientist, are already well aware of a number of project risks. You might want to keep these concerns to yourself, as you don’t want to come across as negative, or worse, someone who is not up to the job ahead. Please don’t, if you foresee possible problems at this stage and you don’t speak out, they can come back as a boomerang when the problems actually occur. Rather, invite all stakeholders to perform a risk analysis together.

This is good advice and applies outside of data science projects as well.  H/T R-bloggers

Related Posts

Road Construction Incentive Contracts And R

Sebastian Kranz promotes an interesting RTutor project: Patrick Bajari and Gregory Lewis have collected a detailed sample of 466 road construction projects in Minnesota to study this question in their very interesting article Moral Hazard, Incentive Contracts and Risk: Evidence from Procurement in the Review of Economic Studies, 2014.They estimate a structural econometric model and find that […]

Read More

Analyzing Customer Churn With Keras And H2O

Shirin Glander has released code pertaining to a forthcoming book chapter: This is code that accompanies a book chapter on customer churn that I have written for the German dpunkt Verlag. The book is in German and will probably appear in February: code you find below can be used to recreate all figures and analyses from this […]

Read More


November 2018
« Oct Dec »