Optimizing M Function Calls With Function.ScaleVector()

Chris Webb shows us how we can batch calls to M-driven web services:

One of the most common issues faced when calling web services in M is that the the easiest way of doing so – creating a function that calls the web service, then calling the function once per row in a table using the Invoke Custom Function button – is very inefficient. It’s a much better idea to batch up calls to a web service, if the web service supports this, but doing this forces you to write more complex M code. It’s a problem I wrestled with last year in my custom connector for the Cognitive Services API, and in that case I opted to create functions that can be passed lists instead (see here for more information on how functions with parameters of type list work); I’m sure the developers working on the new AI features in dataflows had to deal with the same problem. This problem is not limited to web services either: calculations such as running totals also need to be optimised in the same way if they are to perform well in M. The good news is that there is a new M function Function.ScalarVector() that allows you to create functions that combine the ease-of-use of row-by-row requests with the efficiency of batch requests.

As Chris notes in the post and in the comments, this is mostly useful when you can batch together individual calls to improve performance.  For functions which operate serially (like opening Excel workbooks), you won’t see much (if any) gain.

Related Posts

Using Hidden Slicers To Control Visible Power BI Slicers

Prathy Kamasani has an interesting problem to solve: In my current project, one of the user requirement was to have a filter on the Year Slicer. To explain in detail, we have various measures to show metrics for current and earlier measures. For example 2016,2017 and 2018. In 2016, we always have blank values for […]

Read More

Executing Python Code In Power BI

Brad Llewellyn shows how to build a visual based on a Python script using Power BI: Now that we’ve seen our data, it’s a relatively simple task to convert the R script to a Python script. There are a few major differences. First, Python is a general purpose programming language, whereas R is a statistical […]

Read More


November 2018
« Oct Dec »