Time-Series Analysis With Box-Jenkins

The folks at Knoyd walk us through time series analysis using the Box-Jenkins method:

However, this approach is not generally recommended so we have to find something more appropriate. One option could be forecasting with the Box-Jenkins methodology. In this case, we will use the SARIMA (Seasonal Auto Regressive Integrated Moving Average) model. In this model, we have to find optimal values for seven parameters:

  • Auto Regressive Component (p)
  • Integration Component (d)
  • Moving Average Component (q)
  • Seasonal Auto Regressive Component (P)
  • Seasonal Integration Component (D)
  • Seasonal Moving Average Component (Q)
  • Length of Season (s)

To set these parameters properly you need to have knowledge of auto-correlation functions and partial auto-correlation functions.

Read on for a nice overview of this method, as well as the importance of making sure your time series data set is stationary.

Related Posts

Road Construction Incentive Contracts And R

Sebastian Kranz promotes an interesting RTutor project: Patrick Bajari and Gregory Lewis have collected a detailed sample of 466 road construction projects in Minnesota to study this question in their very interesting article Moral Hazard, Incentive Contracts and Risk: Evidence from Procurement in the Review of Economic Studies, 2014.They estimate a structural econometric model and find that […]

Read More

Analyzing Customer Churn With Keras And H2O

Shirin Glander has released code pertaining to a forthcoming book chapter: This is code that accompanies a book chapter on customer churn that I have written for the German dpunkt Verlag. The book is in German and will probably appear in February: https://www.dpunkt.de/buecher/13208/9783864906107-data-science.html.The code you find below can be used to recreate all figures and analyses from this […]

Read More

Categories

August 2018
MTWTFSS
« Jul Sep »
 12345
6789101112
13141516171819
20212223242526
2728293031