Time-Series Analysis With Box-Jenkins

The folks at Knoyd walk us through time series analysis using the Box-Jenkins method:

However, this approach is not generally recommended so we have to find something more appropriate. One option could be forecasting with the Box-Jenkins methodology. In this case, we will use the SARIMA (Seasonal Auto Regressive Integrated Moving Average) model. In this model, we have to find optimal values for seven parameters:

  • Auto Regressive Component (p)
  • Integration Component (d)
  • Moving Average Component (q)
  • Seasonal Auto Regressive Component (P)
  • Seasonal Integration Component (D)
  • Seasonal Moving Average Component (Q)
  • Length of Season (s)

To set these parameters properly you need to have knowledge of auto-correlation functions and partial auto-correlation functions.

Read on for a nice overview of this method, as well as the importance of making sure your time series data set is stationary.

Related Posts

The Costs of Specialization within Data Science

Eric Colson argues in favor of data science generalists rather than specialists: But the goal of data science is not to execute. Rather, the goal is to learn and develop profound new business capabilities. Algorithmic products and services like recommendations systems, client engagement bandits, style preference classification, size matching, fashion design systems, logistics optimizers, seasonal trend detection, and more can’t be […]

Read More

Accidentally Building a Population Graph

Neil Saunders shares an example of a newspaper headline which ultimately just shows us population sizes: Some poking around in the NSW Transport Open Data portal reveals how many people enter every Sydney train station on a “typical” day in 2016, 2017 and 2018. We could manipulate those numbers in various ways to estimate total, unique […]

Read More

Categories

August 2018
MTWTFSS
« Jul Sep »
 12345
6789101112
13141516171819
20212223242526
2728293031