Calculating Future Revenue Streams With Phasing

Matt Allington walks us through a somewhat complicated scenario with income stream projections but inconsistent monthly payout rates:

The first thing I decided to do was work out which was the first month of the policy.  I used LOOKUPVALUE to do this because the Calendar table was not connected to the policy table.  Instead of returning the actual month name, I returned the unique MonthID from my calendar table.  I ALWAYS load a unique MonthID in my calendar tables as they are REALLY useful. In short this column is an integer, starting at 1 and incrementing by 1 for each month in the table.  So starting in Jan, after 3 full years the MonthID will be 36.

Pol First Month = LOOKUPVALUE ( 'Calendar'[Month Index], 'Calendar'[Date], MAX ( Policies[Pol Date] )
)

After writing this measure (and all subsequent measures), I placed the measure in the pivot table shown below.  This pivot table has the policy date from the policy table on rows and the YYMM from the Calendar table on columns.  I did this for a very important reason. I knew this would be the way I needed to see the final results and therefore I needed to make sure all measures returned the expected outcome once this layout was used.  And don’t think I wrote the all the formulas correctly to achieve this outcome the first time.  In fact I made plenty of mistakes.  But the point is I wouldn’t have known they were mistakes if I didn’t place the result in a pivot table like the one below.

It’s a good example of breaking apart a fairly complicated concept and rethinking equations as set operations in DAX.

Related Posts

Comparing Power BI Files

Imke Feldmann shows off a new Power BI file comparison tool: What’s not covered?Nothing. The comparison includes everything from the pbit-files: So beneath your M and DAX code, you’ll see all about your visual definitions (incl. filters set !), row level security and much, much more. Actually, I found some information a bit noisy (like […]

Read More

Modeling Semi-Additive Measures

Paul Poco shows a couple techniques for modeling semi-additive measures in Analysis Services and Power BI: As mentioned earlier, the most commonly encountered approach is Option 2, the snapshot fact table. The main drawback of this approach is that the fact table’s size will grow extremely fast. For example, if you want to calculate the headcount in a company with 10,000 employees on average, and you want 5 […]

Read More

Categories

July 2018
MTWTFSS
« Jun Aug »
 1
2345678
9101112131415
16171819202122
23242526272829
3031