Analyzing Federal Reserve Data With Ordinary Least Squares

Sam Shum has a tutorial walking us through extracting and analyzing data from the St. Louis Federal Reserve’s FRED economic database:

Download specific macroeconomic data from FRED St. Louis economic databases and ETL the data. Many other data series can be found at the FRED’s website.

# get unemployment data time series from FRED St. Louis
dfunrate <- get_fred_series("UNRATE", "unrate", observation_start = startdate, observation_end = enddate)
# get University of Michigan consumer sentiment index data time series from FRED St. Louis
dfumcsent <- get_fred_series("UMCSENT", "umcsent", observation_start = startdate, observation_end = enddate)
# combine the two time series data into one data frame
dfall <- cbind(dfunrate,dfumcsent)
# strip or remove redundant month field from data downloaded from FRED St. Louis
dfall <- dfall[,c(1,2,4)]
# obtain the number of data points in the dataframe
mdx <- (1:nrow(dfall))
# convert FRED date field from string to R's date type
dfall$date <- as.Date(dfall$date)

There’s a nice chart builder on the FRED website too, but it’s good to be able to grab the data on your own.

Related Posts

Using ggpairs To Find Correlations Between Variables In R

Akshay Mahale shows how to use the ggpairs function in R to see the correlation between different pairs of variables: From the above matrix for iris we can deduce the following insights: Correlation between Sepal.Length and Petal.Length is strong and dense. Sepal.Length and Sepal.Width seems to show very little correlation as datapoints are spreaded through out the plot area. Petal.Length and Petal.Width also shows strong correlation. Note: The […]

Read More

Testing Spatial Equilibrium Concepts With tidycensus

Ignacio Sarmiento Barbieri walks us through the concept of spatial equilibrium and tests using data from the tidycensus package: Let’s take the model to the data and reproduce figures 2.1. and 2.2 of “Cities, Agglomeration, and Spatial Equilibrium”. The focus are two cities, Chicago and Boston. These cities are chosen because both differ in how easy […]

Read More

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Categories

June 2018
MTWTFSS
« May Jul »
 123
45678910
11121314151617
18192021222324
252627282930