Using The Azure Data Science VM With GPUs

Jennifer Marsman has some tips and tricks around using the Azure Data Science Virtual Machine on an instance running with GPU support:

To get GPU support, you need both hardware with GPUs in a datacenter, as well as the right software – namely, a virtual machine image that includes GPU drivers so you can use the GPU.

The biggest tip is to use the Deep Learning Virtual Machine!  The provisioning experience has been optimized to filter to the options that support GPU (the NC series – see below), which make it easier to set it up correctly.

Read on for the rest of the advice.

Related Posts

Defining TF-IDF

Bruno Stecanella explains the concept behind TF-IDF: TF-IDF was invented for document search and information retrieval. It works by increasing proportionally to the number of times a word appears in a document, but is offset by the number of documents that contain the word. So, words that are common in every document, such as this, what, and if, rank […]

Read More

Sentiment Analysis with Python

Bruno Stecanella shows us how to use MonkeyLearn to perform sentiment analysis in Python: Sentiment analysis is a set of Natural Language Processing (NLP) techniques that takes a text (in more academic circles, a document) written in natural language and extracts the opinions present in the text. In a more practical sense, our objective here is to take a text […]

Read More


June 2018
« May Jul »