Methods For Detecting Anomalies In Business Metrics

Kevin Feasel

2018-06-14

R

Sergey Bryl’ gives us four methods for detecting anomalies in business data:

In this article, by  business metrics, we mean numerical indicators we regularly measure and use to track and assess the performance of a specific business process. There is a huge variety of business metrics in the industry: from conventional to unique ones. The latter are specifically developed for and used in one company or even just by one of its teams. I want to note that usually, a business metrics have dimensions, which imply the possibility of drilling down the structure of the metric. For instance, the number of sessions on the website can have dimensions: types of browsers, channels, countries, advertising campaigns, etc. where the sessions took place. The presence of a large number of dimensions per metric, on the one hand, provides a comprehensive detailed analysis, and, on the other, makes its conduct more complex.

Anomalies are abnormal values of business indicators. We cannot claim anomalies are something bad or good for business. Rather, we should see them as a signal that there have been some events that significantly influenced a business process and our goal is to determine the causes and potential consequences of such events and react immediately. Of course, from the business point of view, it is better to find such events than ignore them.

It was interesting comparing the results of the four methods.  H/T R-bloggers

Related Posts

Interactive ggplot Plots with plotly

Laura Ellis takes us through ggplotly: As someone very interested in storytelling, ggplot2 is easily my data visualization tool of choice. It is like the Swiss army knife for data visualization. One of my favorite features is the ability to pack a graph chock-full of dimensions. This ability is incredibly handy during the data exploration […]

Read More

Goodbye, gather and spread; Hello pivot_long and pivot_wide

John Mount covers a change in tidyr which mimics Mount and Nina Zumel’s pivot_to_rowrecs and unpivot_to_blocks functions in the cdata package: If you want to work in the above way we suggest giving our cdatapackage a try. We named the functions pivot_to_rowrecs and unpivot_to_blocks. The idea was: by emphasizing the record structure one might eventually internalize what the transforms […]

Read More

Categories

June 2018
MTWTFSS
« May Jul »
 123
45678910
11121314151617
18192021222324
252627282930