There Is No Easy Button With Predictive Analytics

Scott Mutchler dispels some myths:

There are a couple of myths that I see more an more these days.  Like many myths they seem plausible on the surface but experienced data scientist know that the reality is more nuanced (and sadly requires more work).

Myths:

  • Deep learning (or Cognitive Analytics) is an easy button.  You can throw massive amounts of data and the algorithm will deliver a near optimal model.
  • Big data is always better than small data.  More rows of data always results in a significantly better model than less rows of data.

Both of these myths lead some (lately it seems many) people to conclude that data scientist will eventually become superfluous.  With enough data and advanced algorithms maybe we don’t need these expensive data scientists…

Read on for a dismantling of these myths.  There’s a lot more than “collect all of the data and throw it at an algorithm” (and even then, “all” the data rarely really means all, which I think deserves to be a third myth).  H/T R-bloggers

Related Posts

Road Construction Incentive Contracts And R

Sebastian Kranz promotes an interesting RTutor project: Patrick Bajari and Gregory Lewis have collected a detailed sample of 466 road construction projects in Minnesota to study this question in their very interesting article Moral Hazard, Incentive Contracts and Risk: Evidence from Procurement in the Review of Economic Studies, 2014.They estimate a structural econometric model and find that […]

Read More

Analyzing Customer Churn With Keras And H2O

Shirin Glander has released code pertaining to a forthcoming book chapter: This is code that accompanies a book chapter on customer churn that I have written for the German dpunkt Verlag. The book is in German and will probably appear in February: https://www.dpunkt.de/buecher/13208/9783864906107-data-science.html.The code you find below can be used to recreate all figures and analyses from this […]

Read More

Categories

May 2018
MTWTFSS
« Apr Jun »
 123456
78910111213
14151617181920
21222324252627
28293031