Statistical Power And The False Discovery Rate

Brad Klingbenberg has an insightful article on false discovery rate:

A good frequentist would never interpret a p-value as the probability that the null hypothesis is true. But it can be enormously tempting. And despite all your efforts to the contrary it is likely that many of your colleagues don’t appreciate the distinction.

So, really, how wrong is it to treat a p-value as (one minus) the posterior probability that the null hypothesis is true? In general, it’s bad. But in some cases a p-value is a very good approximation to a posterior probability. Here we examine that approximation in a common testing scenario.

Check it out for sure.

Related Posts

Conjoint Analysis In R

Abhijit Telang introduces the concept of conjoint analysis and shows how you can implement this in R: We will need to typically transform the problem of utility modeling from its intangible, abstract form to something that is measurable. That is, we wish to assign a numeric value to the perceived utility by the consumer, and […]

Read More

Bayesian Modeling Of Hardware Failure Rates

Sean Owen shows how you can use Bayesian statistical approaches with Spark Streaming, using the example of hard drive failure rates: This data doesn’t arrive all at once, in reality. It arrives in a stream, and so it’s natural to run these kind of queries continuously. This is simple with Apache Spark’s Structured Streaming, and proceeds […]

Read More


May 2018
« Apr Jun »