Statistical Power And The False Discovery Rate

Brad Klingbenberg has an insightful article on false discovery rate:

A good frequentist would never interpret a p-value as the probability that the null hypothesis is true. But it can be enormously tempting. And despite all your efforts to the contrary it is likely that many of your colleagues don’t appreciate the distinction.

So, really, how wrong is it to treat a p-value as (one minus) the posterior probability that the null hypothesis is true? In general, it’s bad. But in some cases a p-value is a very good approximation to a posterior probability. Here we examine that approximation in a common testing scenario.

Check it out for sure.

Related Posts

Bias Correction In Standard Deviation Estimates

John Mount explains how to perform bias correction and explains why it happens so rarely in practice: The bias in question is falling off at a rate of 1/n (where n is our sample size). So the bias issue loses what little gravity it ever may have ever had when working with big data. Most sources of noise will […]

Read More

Explaining Neural Networks With H2O

Shirin Glander explains some of the concepts behind neural networks using H2O as a guide: Before, when describing the simple perceptron, I said that a result is calculated in a neuron, e.g. by summing up all the incoming data multiplied by weights. However, this has one big disadvantage: such an approach would only enable our neural net […]

Read More

Categories

May 2018
MTWTFSS
« Apr Jun »
 123456
78910111213
14151617181920
21222324252627
28293031