Statistical Power And The False Discovery Rate

Brad Klingbenberg has an insightful article on false discovery rate:

A good frequentist would never interpret a p-value as the probability that the null hypothesis is true. But it can be enormously tempting. And despite all your efforts to the contrary it is likely that many of your colleagues don’t appreciate the distinction.

So, really, how wrong is it to treat a p-value as (one minus) the posterior probability that the null hypothesis is true? In general, it’s bad. But in some cases a p-value is a very good approximation to a posterior probability. Here we examine that approximation in a common testing scenario.

Check it out for sure.

Related Posts

There Is No Easy Button With Predictive Analytics

Scott Mutchler dispels some myths: There are a couple of myths that I see more an more these days.  Like many myths they seem plausible on the surface but experienced data scientist know that the reality is more nuanced (and sadly requires more work). Myths: Deep learning (or Cognitive Analytics) is an easy button.  You […]

Read More

Downsides Of Logistic Regression

Vincent Granville points out a few flaws in logistic regression: I recently read a very popular article entitled 5 Reasons “Logistic Regression” should be the first thing you learn when becoming a Data Scientist. Here I provide my opinion on why this should no be the case. It is nice to have logistic regression on your […]

Read More

Leave a Reply

Your email address will not be published. Required fields are marked *

Categories

May 2018
MTWTFSS
« Apr  
 123456
78910111213
14151617181920
21222324252627
28293031