Choosing Between SQL, M, And DAX

Paul Turley chooses the form of his destructor:

A Date dimension table is an essential component in most any data warehouse or reporting database so techniques to generate these tables have been around for a long time.  The foundation of a Date dimension table is a table containing one row per contiguous date in a range that includes every possible transaction date or fact record.  To make reporting easier, it is common practice to have multiple date dimensions in the semantic model.  For example, if sales transaction facts have an Order Date and a Delivery Date, and both are used independently for reporting; there may be an Order Date dimension and a Delivery Date dimension in the model.

A common practice for building the dimension table is to just populate a single Date type column with the sequential date values.  After these rows are inserted, date part functions may be used to populate additional columns by referencing the Date value in an expression.  Most every language includes, for example, a MONTH() and YEAR() function to convert a date value into these date parts.

I’m hoping that Paul puts together several of these types of post, where he contrasts building something in SQL, M, and DAX so we can see which language helps most where.

Related Posts

Combining Stream Analytics And Azure ML With Power BI

Brad Llewellyn shows us how to feed Azure ML predictions into Power BI via Azure Stream Analytics: Today, we’re going to talk about combining Stream Analytics with Azure Machine Learning Studio within Power BI.  If you haven’t read the earlier posts in this series, Introduction, Getting Started with R Scripts, Clustering, Time Series Decomposition, Forecasting, Correlations, Custom R Visuals, R Scripts in Query […]

Read More

Extracting Numerical Data Points From Images

Matt Allington visualizes changes in the Gartner magic quadrant for BI tools: Today Gartner released the 2019 magic quadrant for Business Intelligence.  As expected (by me at least), Microsoft is continuing its trail blazing and now has a clear lead over Tableau in both ability to execute and completeness of vision.  I thought it would […]

Read More

Categories

May 2018
MTWTFSS
« Apr Jun »
 123456
78910111213
14151617181920
21222324252627
28293031