Data Types In R

Ellen Talbot gives us an overview of the different data types in R:

Now here’s something we didn’t cover in the video and is especially helpful if something just WILL NOT work and you’ve spent all morning panic eating biscuits.

You can write checks to see if something is numeric, or an integer, with is.numeric() or is.integer().

The general “‘is.XXXXX()’” function will take many of the data types we cover here and more, and can be a real time/life saver.

We could also use class() here and inspect the result.^[You might recall that class(1) had the result of “numeric” – R was not by default considering 1 as an integer for the purpose of the class() function. ### Special numbers As well as i to denote imaginary numbers, there are some additional symbols you might encounter or want to use.

There’s a video as well as a full blog post.

Related Posts

Principal Component Analysis With Stack Overflow Data

Julia Silge explains Principal Component Analysis and shows us an example using Stack Overflow data: We have tidy data, both because that’s what I get when querying our databases and because it is useful for exploratory data analysis when preparing for a machine learning algorithm like PCA. To implement PCA, we need a matrix, and […]

Read More

Using xplain To Interpret Model Results

Joachim Zuckarelli walks us through the xplain package in R: The above XML produces the following output (don’t worry too much about the call of xplain(), we will discuss later on in more detail how to work with the xplain() function): library(car) library(xplain) xplain(call="lm(education ~ young + income + urban, data=Anscombe)", xml="http://www.zuckarelli.de/xplain/example_lm_foreach.xml") ## ## Call: ## lm(formula = education […]

Read More

Leave a Reply

Your email address will not be published. Required fields are marked *

Categories

May 2018
MTWTFSS
« Apr  
 123456
78910111213
14151617181920
21222324252627
28293031