Data Types In R

Ellen Talbot gives us an overview of the different data types in R:

Now here’s something we didn’t cover in the video and is especially helpful if something just WILL NOT work and you’ve spent all morning panic eating biscuits.

You can write checks to see if something is numeric, or an integer, with is.numeric() or is.integer().

The general “‘is.XXXXX()’” function will take many of the data types we cover here and more, and can be a real time/life saver.

We could also use class() here and inspect the result.^[You might recall that class(1) had the result of “numeric” – R was not by default considering 1 as an integer for the purpose of the class() function. ### Special numbers As well as i to denote imaginary numbers, there are some additional symbols you might encounter or want to use.

There’s a video as well as a full blog post.

Related Posts

xgboost and Small Numbers of Subtrees

John Mount covers an interesting issue you can run into when using xgboost: While reading Dr. Nina Zumel’s excellent note on bias in common ensemble methods, I ran the examples to see the effects she described (and I think it is very important that she is establishing the issue, prior to discussing mitigation).In doing that I ran into one more […]

Read More

Reinforcement Learning with R

Holger von Jouanne-Diedrich takes us through concepts in reinforcement learning: At the core this can be stated as the problem a gambler has who wants to play a one-armed bandit: if there are several machines with different winning probabilities (a so-called multi-armed bandit problem) the question the gambler faces is: which machine to play? He could “exploit” one […]

Read More


May 2018
« Apr Jun »