Building Control Charts With R

Kevin Feasel



Kamal Kumar covers one of my favorite types of charts:

Control charts are used during the Control phase of DMAIC methodology. Control charts, also known as Shewhart charts or process-behavior charts, are a statistical process control tool used to determine if a manufacturing or business process is in a state of control. If analysis of the control chart indicates that the process is currently under control, then no corrections or changes to process control parameters are needed. Moreover, data from the method can be used to predict the future performance of the process. If the control chart indicates that the process is not in control, analysis of the chart can help determine the sources of variation, as this will result in degradation of process performance.

There are many packages in R, which can be used for analysis related to Six Sigma. Here, we will go through qcc package (R package for statistical quality control charts) and learn “How to create control chart (to know whether the process is in control)”.

Control charts are great for telling if a process has changed in some important way—if your machine is boring holes outside of tolerances, if your busy web server is getting closer to the breaking point, etc.

Related Posts

Visualizing with Heatmaps in R

Anisa Dhana shows how you can create a quick heatmap plot in R: To give your own colors use the scale_fill_gradientn function.ggplot(dat, aes(Age, Race)) + geom_raster(aes(fill = BMI)) + scale_fill_gradientn(colours=c("white", "red")) This is a quick example using ggplot2 but there are other heatmap libraries available too.

Read More

Predicting Intermittent Demand

Bruno Rodrigues shows one technique for forecasting intermittent data: Now, it is clear that this will be tricky to forecast. There is no discernible pattern, no trend, no seasonality… nothing that would make it “easy” for a model to learn how to forecast such data. This is typical intermittent demand data. Specific methods have been […]

Read More


May 2018
« Apr Jun »