How Spark Works: RDDs And DAGs

Shubham Agarwal gets into the way that Spark translates operations on Resilient Distributed Datasets into actions:

When we do a transformation on any RDD, it gives us a new RDD. But it does not start the execution of those transformations. The execution is performed only when an action is performed on the new RDD and gives us a final result.

So once you perform any action on an RDD, Spark context gives your program to the driver.

The driver creates the DAG (directed acyclic graph) or execution plan (job) for your program. Once the DAG is created, the driver divides this DAG into a number of stages. These stages are then divided into smaller tasks and all the tasks are given to the executors for execution.

Click through for more details.

Related Posts

Tips For Using PolyBase With Cloudera QuickStart VM

I have a post on using Cloudera’s QuickStart VM with PolyBase: Here’s something which tripped me up a little bit while connecting to Cloudera using SQL Server. The data node name, instead of being quickstart.cloudera like the host name, is actually localhost. You can change this in /etc/cloudera-scm-agent/config.ini. Because PolyBase needs to have direct access to the data nodes, […]

Read More

Bayesian Modeling Of Hardware Failure Rates

Sean Owen shows how you can use Bayesian statistical approaches with Spark Streaming, using the example of hard drive failure rates: This data doesn’t arrive all at once, in reality. It arrives in a stream, and so it’s natural to run these kind of queries continuously. This is simple with Apache Spark’s Structured Streaming, and proceeds […]

Read More

Categories

April 2018
MTWTFSS
« Mar May »
 1
2345678
9101112131415
16171819202122
23242526272829
30