Building A Model: Lumping And Splitting

Anna Schneider and Alex Smolyanskaya explain some of the tradeoffs between lumping groups together and splitting them out when it comes to algorithm selection:

At Stitch Fix, individual personalization is in our DNA: every client is unique and every piece of clothing we send is chosen to be just right. When we buy merchandise, we could choose to lump clients together; algorithms trained on lumped data would steer us toward that little black dress or those comfy leggings that delight a core, modal group of clients. Yet when we split clients into narrower segments and focus on the tails of the distribution, the algorithms have the chance to also tease out that sleek pinstripe blazer or that pair of distressed teal jeans that aren’t right for everyone, but just right for someone. As long as we don’t split our clients so finely that we’re in danger of overfitting, and as long as humans can still understand the algorithm’s recommendations, splitting is the way to go.

In other cases lumping can provide action-oriented clarity for human decision-makers. For example, we might lump clients into larger groups when reporting on business growth for a crisp understanding of holistic business health, even if our models forecast that growth at the level of finer client splits.

Read on and check out their useful chart for figuring out whether lumping or splitting is the better idea for you.

Related Posts

Tidy Anomaly Detection With Anomalize

Abdul Majed Raja walks us through an example using the anomalize package: One of the important things to do with Time Series data before starting with Time Series forecasting or Modelling is Time Series Decomposition where the Time series data is decomposed into Seasonal, Trend and remainder components. anomalize has got a function time_decompose() to perform the same. […]

Read More

Uploading Data Sets To Azure ML From R

Leila Etaati continues her series on the Azure ML R package by showing how to upload a data set: There is a function in AzureML package name “workspace” that creates a reference to an AzureML Studio workspace by getting the authentication token and workspace id as below: 1 ws <– workspace( id , auth  ) to […]

Read More

Leave a Reply

Your email address will not be published. Required fields are marked *

Categories

April 2018
MTWTFSS
« Mar  
 1
2345678
9101112131415
16171819202122
23242526272829
30