Outlier Detection With dplyr And ruler

Evgeni Chasnovski shows how to use a couple R packages in concert to find outliers:

During the process of data analysis one of the most crucial steps is to identify and account for outliers, observations that have essentially different nature than most other observations. Their presence can lead to untrustworthy conclusions. The most complicated part of this task is to define a notion of “outlier”. After that, it is straightforward to identify them based on given data.

There are many techniques developed for outlier detection. Majority of them deal with numerical data. This post will describe the most basic ones with their application using dplyrand ruler packages.

After reading this post you will know:

  • Most basic outlier detection techniques.

  • A way to implement them using dplyr and ruler.

  • A way to combine their results in order to obtain a new outlier detection method.

  • A way to discover notion of “diamond quality” without prior knowledge of this topic (as a happy consequence of previous point).

Read the whole thing.  H/T R-Bloggers

Related Posts

Microsoft R Open 3.5.1

David Smith announces Microsoft R Open 3.5.1: Microsoft R Open 3.5.1 has been released, combining the latest R language engine with multi-processor performance and tools for managing R packages reproducibly. You can download Microsoft R Open 3.5.1 for Windows, Mac and Linux from MRAN now. Microsoft R Open is 100% compatible with all R scripts and packages, and works with […]

Read More

Performing Linear Regression With Power BI

Jason Cantrell shows how to create a simple linear regression in Power BI: Linear Regression is a very useful statistical tool that helps us understand the relationship between variables and the effects they have on each other. It can be used across many industries in a variety of ways – from spurring value to gaining […]

Read More

Categories

December 2017
MTWTFSS
« Nov Jan »
 123
45678910
11121314151617
18192021222324
25262728293031