Data Science At A Small Tech Company

Julia Silge blogs about her first year as a data scientist at Stack Overflow:

In the fall I saw this post by Shanif Dhanani about being a data scientist at a small company, and it is entirely on point, the whole way through. So much of that post resonates with my own experience of being a data scientist at a small company. And yes, I do keep saying “small company”; Stack Overflow is likely smaller than you think it is, 250 or so employees in total. I am the second data scientist here, joining David Robinson who was the first data science hire, on a data team that is five in total.

I cannot emphasize enough how much of my day-to-day work is communicating, collaborating with others, and answering not-entirely-specified questions. Data science is highly technical work, but the value of my technical work would be much lower if I could not communicate what it means in clear and compelling ways. My definition of communication here is pretty broad, and includes speaking, writing, and data visualization.

If you’re interested in a career in data science, this is food for thought.

Related Posts

Principal Component Analysis With Faces

Mic at The Beginner Programmer shows us how to creepy PCA diagrams with human faces: PCA looks for a new the reference system to describe your data. This new reference system is designed in such a way to maximize the variance of the data across the new axis. The first principal component accounts for as […]

Read More

Using Uncertainty For Model Interpretation

Yoel Zeldes and Inbar Naor explain how uncertainty can help you understand your models better: One prominent example is that of high risk applications. Let’s say you’re building a model that helps doctors decide on the preferred treatment for patients. In this case we should not only care about the accuracy of the model, but […]

Read More


December 2017
« Nov Jan »