An Apache Sqoop Tutorial

Kevin Feasel

2017-11-22

ETL, Hadoop

Subham Sinha has an introductory-level tutorial on Apache Sqoop:

For Hadoop developer, the actual game starts after the data is being loaded in HDFS. They play around this data in order to gain various insights hidden in the data stored in HDFS.

So, for this analysis the data residing in the relational database management systems need to be transferred to HDFS. The task of writing MapReduce code for importing and exporting data from relational database to HDFS is uninteresting & tedious. This is where Apache Sqoop comes to rescue and removes their pain. It automates the process of importing & exporting the data.

Sqoop makes the life of developers easy by providing CLI for importing and exporting data. They just have to provide basic information like database authentication, source, destination, operations etc. It takes care of remaining part.

Sqoop internally converts the command into MapReduce tasks, which are then executed over HDFS. It uses YARN framework to import and export the data, which provides fault tolerance on top of parallelism.

In my experience, Sqoop does two things really well:  first, it lets you move data from a relational database into HDFS (or Hive).  Second, it lets you move data from HDFS (or Hive) into a staging table on a relational database.  That can make Sqoop a useful part of an ETL process.

Related Posts

Controlling Partition and File Counts in Spark

Landon Robinson shows how we can control the number of partitions (and therefore the number of output files) on reduce-style jobs in Spark: Whatever the case may be, the desire to control the number of files for a job or query is reasonable – within, ahem, reason – and in general is not too complicated. And, it’s often […]

Read More

Creating an Azure Databricks Cluster

Brad Llewellyn shows how you can create an Azure Databricks cluster: There are three major concepts for us to understand about Azure Databricks, Clusters, Code and Data.  We will dig into each of these in due time.  For this post, we’re going to talk about Clusters.  Clusters are where the work is done.  Clusters themselves […]

Read More

Categories

November 2017
MTWTFSS
« Oct Dec »
 12345
6789101112
13141516171819
20212223242526
27282930