Picking A Python IDE

Kevin Jacobs reviews a few Python IDEs from the perspective of a data scientist:

Ladies and gentlemens, this is one of the most perfect IDEs for editing your Python code! At least in my opinion. Jupyter notebook is a web based code editor and can quickly generate visualizations. You can mix up code and text containing no, simple or complex mathematics. One thing I am missing here, is the support for code completion, but there are tons of plugins available so this should be no problem. It is also easy to turn your notebook into a presentation. For collaboration with non-technical teams, this is a great tool.

Conclusion: perfect Python IDE for data science! Less support for code inspection.

Click through for reviews of three IDEs.

Related Posts

Comparing Keras In Python Versus R

Dmitry Kisler performs image classification using Keras in both Python and R: From the plots above, one can see that: the accuracy of your model doesn’t depend on the language you use to build and train it (the plot shows only train accuracy, but the model doesn’t have high variance and the bias accuracy is […]

Read More

Auto-Encoders And KernelML

Rohan Kotwani gives us an example where KernelML might be better than TensorFlow or PyTorch: So what’s the point of using KernelML? 1. The parameters in each layer can be non-linear 2. Each parameter can be sampled from a different random distribution 3. The parameters can be transformed to meet certain constraints 4. Network combinations […]

Read More


November 2017
« Oct Dec »