Picking A Python IDE

Kevin Jacobs reviews a few Python IDEs from the perspective of a data scientist:

Ladies and gentlemens, this is one of the most perfect IDEs for editing your Python code! At least in my opinion. Jupyter notebook is a web based code editor and can quickly generate visualizations. You can mix up code and text containing no, simple or complex mathematics. One thing I am missing here, is the support for code completion, but there are tons of plugins available so this should be no problem. It is also easy to turn your notebook into a presentation. For collaboration with non-technical teams, this is a great tool.

Conclusion: perfect Python IDE for data science! Less support for code inspection.

Click through for reviews of three IDEs.

Related Posts

MAPE and Its Flaws

Jan Fischer takes us through Mean Absolute Percentage Error as a measure of forecast quality: Particular small actual values bias the MAPE.If any true values are very close to zero, the corresponding absolute percentage errors will be extremely high and therefore bias the informativity of the MAPE (Hyndman & Koehler 2006). The following graph clarifies this […]

Read More

Calculating AUC in R

Andrew Treadway shows how you can calculate Area Under the Curve in R: AUC is an important metric in machine learning for classification. It is often used as a measure of a model’s performance. In effect, AUC is a measure between 0 and 1 of a model’s performance that rank-orders predictions from a model. For […]

Read More


November 2017
« Oct Dec »