Building Dynamic Row Headers With ML Services

Dave Mason tries to get around his RESULT SETS limitation when using SQL Server Machine Learning Services:

The columns in the data frame clearly have names, but SQL Server isn’t using them. The data frame columns have types in R too (more on this in a moment). Now that makes me wonder about the data types for the data returned by SQL. How is that determined? If SQL isn’t using the column names, can I assume it isn’t making use of the R column types either?

For a point of reference, let’s run some more R code to show the column names and types. As before, the rvest package is used to scrape a web page, with each HTML <table> found becoming a data frame in the “tables” list (line 3). A data frame of table metadata is created by calling data.frame(). The first parameter is a vector of column names (line 4), the second parameter is a vector of column classes (line 5), and the third parameter causes the row “names” to be incrementing digits (line 6).

This is a work in progress as Dave continues his series.

Related Posts


John Mount explains the vtreat package that he and Nina Zumel have put together: When attempting predictive modeling with real-world data you quicklyrun into difficulties beyond what is typically emphasized in machine learning coursework: Missing, invalid, or out of range values. Categorical variables with large sets of possible levels. Novel categorical levels discovered during test, cross-validation, or […]

Read More

R 3.4.4 Now Available

David Smith notes that R 3.4.4 is now generally available: R 3.4.4 has been released, and binaries for Windows, Mac, Linux and now available for download on CRAN. This update (codenamed “Someone to Lean On” — likely a Peanuts reference, though I couldn’t find which one with a quick search) is a minor bugfix release, and shouldn’t cause […]

Read More


November 2017
« Oct Dec »