Defining Result Sets With ML Services

Kevin Feasel

2017-11-16

Python, R

Dave Mason covers a pain point in SQL Server Machine Learning Services:

The example above is so simple, defining the RESULT SETS poses no problems. But what if the format of the output isn’t known at design time? R (or Python) might take the input data set and add, remove, or change columns conditionally. Further, the input data set might not even be known at design time. How would you define the RESULT SETS at run time?

WITH RESULT SETS needs a MAKE_A_GUESS or FIGURE_IT_OUT option. If there’s some other type of “easy button” for this, I haven’t found it.

It would be nice if the service could the ability to read the data frame columns and use those by default.

Related Posts

Comparing TensorFlow Versus PyTorch

Anirudh Rao compares PyTorch to TensorFlow: For small-scale server-side deployments both frameworks are easy to wrap in e.g. a Flask web server. For mobile and embedded deployments, TensorFlow works really well. This is more than what can be said of most other deep learning frameworks including PyTorch. Deploying to Android or iOS does require a non-trivial amount of work in TensorFlow. You don’t have to rewrite the entire inference portion of your model in Java or C++. […]

Read More

Using wrapr For A Consistent Pipe With ggplot2

John Mount shows how you can use the wrapr pipe to perform data processing and building a ggplot2 visual: Now we can run a single pipeline that combines data processing steps and ggplot plot construction. data.frame(x = 1:20) %.>% mutate(., y = cos(3*x)) %.>% ggplot(., aes(x = x, y = y)) %.>% geom_point() %.>% geom_line() %.>% ggtitle("piped ggplot2") Check […]

Read More

Categories

November 2017
MTWTFSS
« Oct Dec »
 12345
6789101112
13141516171819
20212223242526
27282930