Defining Result Sets With ML Services

Kevin Feasel

2017-11-16

Python, R

Dave Mason covers a pain point in SQL Server Machine Learning Services:

The example above is so simple, defining the RESULT SETS poses no problems. But what if the format of the output isn’t known at design time? R (or Python) might take the input data set and add, remove, or change columns conditionally. Further, the input data set might not even be known at design time. How would you define the RESULT SETS at run time?

WITH RESULT SETS needs a MAKE_A_GUESS or FIGURE_IT_OUT option. If there’s some other type of “easy button” for this, I haven’t found it.

It would be nice if the service could the ability to read the data frame columns and use those by default.

Related Posts

Reinforcement Learning with R

Holger von Jouanne-Diedrich takes us through concepts in reinforcement learning: At the core this can be stated as the problem a gambler has who wants to play a one-armed bandit: if there are several machines with different winning probabilities (a so-called multi-armed bandit problem) the question the gambler faces is: which machine to play? He could “exploit” one […]

Read More

A Quick Keras Example

Shubham Dangare takes us through a quick example using Keras and TensorFlow in Python: Keras is a high-level neural networks API, written in Python and capable of running on top of Tensorflow, CNTK  or Theano. It was developed with a focus on enabling fast experimentation. In this blog, we are going to cover one small […]

Read More

Categories

November 2017
MTWTFSS
« Oct Dec »
 12345
6789101112
13141516171819
20212223242526
27282930