Finding The Right Batch Size For Bulk Loads

Dan Guzman has some bulk load batch size considerations:

Bulk load has long been the fastest way to mass insert rows into a SQL Server table, providing orders of magnitude better performance compared to traditional INSERTs. SQL Server database engine bulk load capabilities are leveraged by T-SQL BULK INSERT, INSERT…SELECT, and MERGE statements as well as by SQL Server client APIs like ODBC, OLE DB, ADO.NET, and JDBC. SQL Server tools like BCP and components like SSIS leverage these client APIs to optimize insert performance.

SQL Server 2016 and later improves performance further by turning on bulk load context and minimal logging by default when bulk loading into SIMPLE and BULK LOGGED recovery model databases, which previously required turning on trace flags as detailed in this blog post by Parikshit Savjani of the MSSQL Tiger team. That post also includes links to other great resources that thoroughly cover minimal logging and data loading performance, which I recommend you peruse if you use bulk load often. I won’t repeat all that information here but do want to call attention to the fact that these new bulk load optimizations can result in much more unused space when a small batch size is used compared to SQL Server 2014 and older versions.

Click through for some tips.

Related Posts

Actual Execution Plan Enhancements

Pedro Lopes points out some additional data available in the properties section when you generate an actual execution plan: Looking at the actual execution plan is one of the most used performance troubleshooting techniques. Having information on elapsed CPU time and overall execution time, together with session wait information in an actual execution plan allows […]

Read More

Soft-NUMA Doesn’t Limit MAXDOP

Lonny Niederstadt tests whether soft-NUMA forces MAXDOP = 1: I mentioned that I was planning to set up a soft-NUMA node for each vcpu on a 16 vcpu VM, to evenly distribute incoming connections and thus DOP 1 queries over vcpus.  Thomas Kejser et al used this strategy to good effect in “The Data Loading […]

Read More

Leave a Reply

Your email address will not be published. Required fields are marked *

Categories

November 2017
MTWTFSS
« Oct  
 12345
6789101112
13141516171819
20212223242526
27282930