Window Function Sort Performance

Lukas Eder explains one potential issue with window functions against large data sets:

Usually, this blog is 100% pro window functions and advocates using them at any occasion. But like any tool, window functions come at a price and we must carefully evaluate if that’s a price we’re willing to pay. That price can be a sort operation. And as we all know, sort operations are expensive. They follow O(n log n) complexity, which must be avoided at all costs for large data sets.

In a previous post, I’ve described how to calculate a running total with window functions (among other ways). In this post, we’re going to calculate the cumulative revenue at each payment in our Sakila database.

This is a good article comparing how different RDBMS products handle a fairly complicated windowed query and what you can do to improve performance.

Related Posts

When Adding Indexes Hurts Performance

Jeffry Schwartz takes us through an odd case: Recently, a customer requested that we tune a query that took 13 seconds to return 11 rows.  SQL Server 2017 suggested an index to improve performance, so we added it in a development environment.  The improvement made the query run 647 seconds, almost 50 TIMES longer than the original!  This naturally caused […]

Read More

Power Query and the Benefits of Immutability

Chris Webb explains why immutable expressions can be faster to run multiple times than mutable processes: Instead of taking the value #”Sorted Rows”[Column2]{0} and storing it in the variable Column2 then adding Column2 four times, I’m  adding the expression #”Sorted Rows”[Column2]{0} together four times. The query returns the same number as the previous query. However […]

Read More

Categories

November 2017
MTWTFSS
« Oct Dec »
 12345
6789101112
13141516171819
20212223242526
27282930