Multiple Result Sets With ML Services

Dave Mason figures out how to create multiple result sets with SQL Server ML Services:

Of course for this strategy to work, I’d have to know ahead of time how many data frames/HTML tables there are. Hmmm. Can dynamic T-SQL help me here? If I could find out at run time how many data frames there are, and which ones I may or may not want, then why not? Here’s some R code that reads HTML tables into a variable as a list of data frames(line 8), iterates through the list (starting at line 18), decides if the HTML table has any data in it (lines 21, 24), and adds the HTML table number (the element number in the list) to a different data frame (line 27). The output shows us we would want HTML tables 1, 2, and 4. (Yeah, I really didn’t want #4. But that can be fixed by enhancing the R code to be more selective. Let’s just go with it for now.)

The method is a bit disappointing (and it’s arguably worse for inputs); I do hope the ML Services team can improve upon this experience.

Related Posts

Building Dynamic Row Headers With ML Services

Dave Mason tries to get around his RESULT SETS limitation when using SQL Server Machine Learning Services: The columns in the data frame clearly have names, but SQL Server isn’t using them. The data frame columns have types in R too (more on this in a moment). Now that makes me wonder about the data […]

Read More

Defining Result Sets With ML Services

Dave Mason covers a pain point in SQL Server Machine Learning Services: The example above is so simple, defining the RESULT SETS poses no problems. But what if the format of the output isn’t known at design time? R (or Python) might take the input data set and add, remove, or change columns conditionally. Further, […]

Read More

Leave a Reply

Your email address will not be published. Required fields are marked *

Categories

November 2017
MTWTFSS
« Oct  
 12345
6789101112
13141516171819
20212223242526
27282930