Multiple Result Sets With ML Services

Kevin Feasel



Dave Mason figures out how to create multiple result sets with SQL Server ML Services:

Of course for this strategy to work, I’d have to know ahead of time how many data frames/HTML tables there are. Hmmm. Can dynamic T-SQL help me here? If I could find out at run time how many data frames there are, and which ones I may or may not want, then why not? Here’s some R code that reads HTML tables into a variable as a list of data frames(line 8), iterates through the list (starting at line 18), decides if the HTML table has any data in it (lines 21, 24), and adds the HTML table number (the element number in the list) to a different data frame (line 27). The output shows us we would want HTML tables 1, 2, and 4. (Yeah, I really didn’t want #4. But that can be fixed by enhancing the R code to be more selective. Let’s just go with it for now.)

The method is a bit disappointing (and it’s arguably worse for inputs); I do hope the ML Services team can improve upon this experience.

Related Posts

Using Cohen’s D for Experiments

Nina Zumel takes us through Cohen’s D, a useful tool for determining effect sizes in experiments: Cohen’s d is a measure of effect size for the difference of two means that takes the variance of the population into account. It’s defined asd = | μ1 – μ2 | / σpooledwhere σpooled is the pooled standard deviation over both cohorts. […]

Read More

Comparing Iterator Performance in R

Ulrik Stervbo has a performance comparison for for, apply, and map functions in R: It is usually said, that for– and while-loops should be avoided in R. I was curious about just how the different alternatives compare in terms of speed. The first loop is perhaps the worst I can think of – the return vector is […]

Read More


November 2017
« Oct Dec »