Multiple Result Sets With ML Services

Kevin Feasel



Dave Mason figures out how to create multiple result sets with SQL Server ML Services:

Of course for this strategy to work, I’d have to know ahead of time how many data frames/HTML tables there are. Hmmm. Can dynamic T-SQL help me here? If I could find out at run time how many data frames there are, and which ones I may or may not want, then why not? Here’s some R code that reads HTML tables into a variable as a list of data frames(line 8), iterates through the list (starting at line 18), decides if the HTML table has any data in it (lines 21, 24), and adds the HTML table number (the element number in the list) to a different data frame (line 27). The output shows us we would want HTML tables 1, 2, and 4. (Yeah, I really didn’t want #4. But that can be fixed by enhancing the R code to be more selective. Let’s just go with it for now.)

The method is a bit disappointing (and it’s arguably worse for inputs); I do hope the ML Services team can improve upon this experience.

Related Posts

From Excel to R: Three Examples

Abdul Majed Raja has a few examples of things which are easy to do in Excel and how you can do them in R: Create a difference variable between the current value and the next valueThis is also known as lead and lag – especially in a time series dataset this varaible becomes very important in feature engineering. In […]

Read More

Calculating AUC in R

Andrew Treadway shows how you can calculate Area Under the Curve in R: AUC is an important metric in machine learning for classification. It is often used as a measure of a model’s performance. In effect, AUC is a measure between 0 and 1 of a model’s performance that rank-orders predictions from a model. For […]

Read More


November 2017
« Oct Dec »