Text Preprocessing With R

Sibanjan Das has started a new series on text mining in R:

Next, we need to preprocess the text to convert it into a format that can be processed for extracting information. It is essential to reduce the size of the feature space before analyzing the text. There are various preprocessing methods that we can use here, such as stop word removal, case folding, stemming, lemmatization, and contraction simplification. However, it is not necessary to apply all of the normalization methods to the text. It depends on the data we retrieve and the kind of analysis to be performed.

The series starts off with a quick description of some preprocessing steps and then building an LDA model to extract key terms from articles.

Related Posts

Sales Predictions with Pandas

Megan Quinn shows how you can use Pandas and linear regression to predict sales figures: Pandas┬áis an open-source Python package that provides users with high-performing and flexible data structures. These structures are designed to make analyzing relational or labeled data both easy and intuitive. Pandas is one of the most popular and quintessential tools leveraged […]

Read More

Linear Regression Assumptions

Stephanie Glen has a chart which explains the four key assumptions behind when Ordinary Least Squares is the Best Linear Unbiased Estimator: If any of the main assumptions of linear regression are violated, any results or forecasts that you glean from your data will be extremely biased,┬áinefficient or misleading. Navigating all of the different assumptions […]

Read More

Categories

November 2017
MTWTFSS
« Oct Dec »
 12345
6789101112
13141516171819
20212223242526
27282930