Columnstore Indexes And ML Services

Niko Neugebauer picks up on some changes that SQL Server 2017 Machine Learning Services can use with respect to columnstore indexes:

I expect not just a couple of rows to be sent over for the Machine Learning Services, but huge tables with million of rows, that also contain hundreds of columns, because this kind of tables are the basis for the Data Science and Machine Learning processes.
While of course we are focusing here on rather small part of the total process (just the IO between SQL Server relational Engine and the Machine Learning Services), where the analytical process itself can take hours, but the IO can still make a good difference in some cases.
I love this improvement, which is very under-the-hood, but it will help a couple of people to make a decision of migrating to the freshly released SQL Server 2017 instead of the SQL Server 2016.

I haven’t quite taken advantage of this yet (just moved to 2017 but still in 130 compatibility mode) but fingers crossed that I’ll see those improvements.

Related Posts

Comparing TensorFlow Versus PyTorch

Anirudh Rao compares PyTorch to TensorFlow: For small-scale server-side deployments both frameworks are easy to wrap in e.g. a Flask web server. For mobile and embedded deployments, TensorFlow works really well. This is more than what can be said of most other deep learning frameworks including PyTorch. Deploying to Android or iOS does require a non-trivial amount of work in TensorFlow. You don’t have to rewrite the entire inference portion of your model in Java or C++. […]

Read More

Using R To Hit Azure ML From Power BI

Leila Etaati shows how you can use R to hit an Azure ML endpoint to populate a data set in Power BI: You need to create a model in Azure ML Studio and create a web service for it. The traditional example in Predict a passenger on Titanic ship is going to survived or not? […]

Read More

Categories

October 2017
MTWTFSS
« Sep Nov »
 1
2345678
9101112131415
16171819202122
23242526272829
3031