Columnstore Indexes And ML Services

Niko Neugebauer picks up on some changes that SQL Server 2017 Machine Learning Services can use with respect to columnstore indexes:

I expect not just a couple of rows to be sent over for the Machine Learning Services, but huge tables with million of rows, that also contain hundreds of columns, because this kind of tables are the basis for the Data Science and Machine Learning processes.
While of course we are focusing here on rather small part of the total process (just the IO between SQL Server relational Engine and the Machine Learning Services), where the analytical process itself can take hours, but the IO can still make a good difference in some cases.
I love this improvement, which is very under-the-hood, but it will help a couple of people to make a decision of migrating to the freshly released SQL Server 2017 instead of the SQL Server 2016.

I haven’t quite taken advantage of this yet (just moved to 2017 but still in 130 compatibility mode) but fingers crossed that I’ll see those improvements.

Related Posts

Sliding Window Partitioning And Columnstore Indexes

Dmitri Korotkevitch walks through setting up sliding window partitioning on tables with columnstore indexes: The biggest difference resides in partition function split and merge behavior. With B-Tree indexes, you can split and merge non-empty partitions. SQL Server would split or merge the data automatically, granted with the schema-modification (Sch-M) table lock held in place. Other sessions would […]

Read More

A Columnstore Trick With No Practical Value

Joe Obbish explains a quirk of columnstore index compression: The insert query now takes 3594 ms of CPU time and 2112 ms of elapsed time on my machine. The size of each rowgroup did not change. It’s still 2098320 bytes. Even though this is a parallel query there’s no element of randomness in this case. […]

Read More

Categories

October 2017
MTWTFSS
« Sep Nov »
 1
2345678
9101112131415
16171819202122
23242526272829
3031