Dealing With Word Tensors

Chris Moody continues his series on natural language processing:

Counting and tensor decompositions are elegant and straightforward techniques. But these methods are grossly underepresented in business contexts. In this post we factorized an example made up of word skipgrams occurring within documents to arrive at word and document vectors simultaneously. This kind of analysis is effective, simple, and yields powerful concepts.

Look to your own data, and before throwing black-box deep learning machines at them, try out tensor factorizations!

He has a set of animated GIFs to help with learning, though I do wish they were about 30% slower so you can take a moment to read each section before it jumps to the next bit.

Related Posts

Methods To Improve Model Accuracy

Tristan Robinson shows how to go back to the drawing board when your model’s accuracy isn’t cutting it: One of the reoccurring principles that appears with machine learning is that of Ockham’s razor, which states that the best models are simple models that fit the data well; this is not an irrefutable principle of logic, but […]

Read More

JupyterLab Now Available

Project Jupyter announces the general availability of JupyterLab: JupyterLab is an interactive development environment for working with notebooks, code and data. Most importantly, JupyterLab has full support for Jupyter notebooks. Additionally, JupyterLab enables you to use text editors, terminals, data file viewers, and other custom components side by side with notebooks in a tabbed work area. JupyterLab […]

Read More


October 2017
« Sep Nov »