Bayesian Nonparametric Models

Luba Belokon asked Vadim Smolyakov to explain Bayesian Nonparametric models and here’s the result:

Bayesian Nonparametrics are a class of models for which the number of parameters grows with data. A simple example is non-parametric K-means clustering [1]. Instead of fixing the number of clusters K, we let data determine the best number of clusters. By letting the number of model parameters (cluster means and covariances) grow with data, we are better able to describe the data as well as generate new data given our model.

Of course, to avoid over-fitting, we penalize the number of clusters K via a regularization parameter which controls the rate at which new clusters are created. 

This is an interesting discussion of the Dirichlet process, particularly as applied to K-mean clustering.  It helps you figure out your best choice for K, no small task.

Related Posts

Feature And Text Classification Using Naive Bayes In R

I wrap up my series on the Naive Bayes class of algorithms, finally writing some code along the way: Now we’re going to look at movie reviews and predict whether a movie review is a positive or a negative review based on its words. If you want to play along at home, grab the data set, […]

Read More

Classifying Texts With Naive Bayes

I continue my series on Naive Bayes with another hand-calculation post: Step two is, on the surface, pretty tough: how do we figure out if a set of words is a business phrase or a baseball phrase? We could try to think up a set of features. For example, how long is the phrase? How many unique […]

Read More

Categories

October 2017
MTWTFSS
« Sep Nov »
 1
2345678
9101112131415
16171819202122
23242526272829
3031