Running Out Of Ints

Paul Randal explains the unlikelihood that you’d run out of bigints in a table:

So with 1 million rows per second, you’ll be generating 1 million x 3,600 (seconds in an hour) x 24 (hours in a day) = 86.4 billion rows per day, so you’ll need about 1.4 terabytes of new storage per day. If you’re using the bigint identity as a cluster key, each row needs new space, so you’ll need almost exactly 0.5 petabytes of new storage every year.

At that rate, actually running out of bigint values AND storing them would take roughly 150 thousand petabytes. This is clearly impractical – especially when you consider that storing *just* a bigint is pretty pointless – you’d be storing a bigint and some other data too – probably doubling the storage necessary, at least.

By contrast, if you have a staging table that flows 10 million rows a day (meaning 10 million leave and 10 million new ones enter), you’ll overflow an int column in less than a year.  It’s worth thinking about data sizes before deciding on the type of a surrogate key.  Bigint is the safest, and if you think you’ll need it, go with it.  But there is that storage overhead.

Related Posts

The Cost of Ad Hoc Queries

Erin Stellato gives us a simple demonstration of why parameterization is important for performance: From this screenshot you can see that we have about 3GB total dedicated to the plan cache, and of that 1.7GB is for the plans of over 158,000 adhoc queries. Of that 1.7GB, approximately 500MB is used for 125,000 plans that […]

Read More

Configuring MAXDOP During SQL Server Setup

Brent Ozar notes something nice in the SQL Server 2019 CTP 3.0 setup: Just a short note – in SQL Server 2019, the setup process has a new MAXDOP tab: It’s right next to the TempDB tab. I like this idea a lot, as MAXDOP is one of those things you always change right after […]

Read More

Categories

October 2017
MTWTFSS
« Sep Nov »
 1
2345678
9101112131415
16171819202122
23242526272829
3031