Finding Adaptive Join Inefficiencies

Joe Obbish walks us through a scenario with adaptive joins in SQL Server 2017:

The estimated costs for the two queries are very close to each other: 74.6842 and 74.6839 optimizer units. However, we saw earlier that the tipping point for an adaptive join on this query can vary between 22680 and 80388.3 rows. This inconsistency means that we can find a query that performs worse with adaptive joins enabled.

Click through to see the queries Joe is using.  Based on this, I’d guess that this is probably a knife-edge problem:  most of the time, adaptive join processing is better, but if you hit the wrong query, it’s worse.

Related Posts

Cloning And Columnstore Statistics

Niko Neugebauer points out a fix in SQL Server 2019: I have a huge love for the DBCC CLONEDATABASE command – it has been made available (backported) to every SQL Server version starting with SQL Server 2012, since the original release in SQL Server 2014, while being constantly improved in the Service Packs and Cumulative Updates. This […]

Read More

Hybrid Columnstore And B+ Tree Designs

Adrian Colyer reviews a Microsoft paper on the combination of columnstore and B+ tree indexes on a single table: The authors conducted a series of microbenchmarks as follows: scans with single predicates with varying selectivity to study the trade-off between the range scan of a B+ tree vs a columnstore scan sort and group-by queries […]

Read More

Categories

October 2017
MTWTFSS
« Sep Nov »
 1
2345678
9101112131415
16171819202122
23242526272829
3031