Explaining Confidence Intervals

Mala Mahadevan explains what confidence intervals are:

Suppose I look at a sampling of 100 americans who are asked if they approve of the job the supreme court is doing. Let us say for simplicity’s sake that the only two answers possible are yes or no. Out of 100, say 40% say yes. As an ordinary person, you would think 40% of people just approve. But a deeper answer would be – the true proportion of americans who approve of the job the supreme court is doing is between x% and y%.

How confident I am that it is?  About z%. (the common math used is 95%).  That is an answer that is more reflective of the uncertainty related to questioning people and taking the answers to be what is truly reflective of an opinion. The x and y values make up what is called a ‘confidence interval’.

Read the whole thing.

Related Posts

Unintentional Data

Eric Hollingsworth describes data science as the cost of collecting data approaches zero: Thankfully not only have modern data analysis tools made data collection cheap and easy, they have made the process of exploratory data analysis cheaper and easier as well. Yet when we use these tools to explore data and look for anomalies or […]

Read More

Measuring Semantic Relatedness

Sandipan Dey re-works a university assignment on semantic relatedness in Python: Let’s define the semantic relatedness of two WordNet nouns x and y as follows: A = set of synsets in which x appears B = set of synsets in which y appears distance(x, y) = length of shortest ancestral path of subsets A and B sca(x, y) = a shortest common ancestor of subsets A and B This is the notion of […]

Read More

Categories

September 2017
MTWTFSS
« Aug Oct »
 123
45678910
11121314151617
18192021222324
252627282930