Basics Of Survival Analysis

Subhasree Chatterjee explains the basics of survival analysis:

Survival analysis is a set of methods to analyze the ‘time to occurrence’ of an event. The response is often referred to as a failure time, survival time, or event time. These methods are widely used in clinical experiments to analyze the ‘time to death’, but nowadays these methods are being used to predict the ‘when’ and ‘why’ of customer churn or employee turnover as well.

The dependent variables for the analysis are generally two functions:

Read the whole thing.  H/T R-Bloggers

Related Posts

Kafka And The Differing Aims Of Data Professionals

Kai Waehner argues that there is an impedence mismatch between data engineers, data scientists, and ML production engineers: Data scientists love Python, period. Therefore, the majority of machine learning/deep learning frameworks focus on Python APIs. Both the stablest and most cutting edge APIs, as well as the majority of examples and tutorials use Python APIs. […]

Read More

Solving The Monty Hall Problem With R

Miroslav Rajter builds a Monty Hall problem simulator using R: The original and most simple scenario of the Monty Hall problem is this: You are in a prize contest and in front of you there are three doors (A, B and C). Behind one of the doors is a prize (Car), while behind others is […]

Read More

Categories

September 2017
MTWTFSS
« Aug Oct »
 123
45678910
11121314151617
18192021222324
252627282930