Parallelism In R

Kevin Feasel

2017-09-06

R

Florian Prive shows off a few methods for parallelizing code in R:

Parallelize with foreach

You need to do at least two things:

  • replace %do% by %dopar%. Basically, always use %dopar% because you can use registerDoSEQ() is you really want to run the foreach sequentially.

  • register a parallel backend using one of the packages that begin with do (such as doParalleldoMCdoMPI and more). I will list only the two main parallel backends because there are too many of them.

Check it out.  Florian spends a lot of time with foreach and doParallel, a little bit of time with flock, and mentions Microsoft R Open.  H/T R-Bloggers

Related Posts

The Lesser-Known Apply Functions In R

Andrew Treadway covers a few of the lesser-known apply functions in R: rapply Let’s start with rapply. This function has a couple of different purposes. One is to recursively apply a function to a list. We’ll get to that in a moment. The other use of rapply is to a apply a function to only those elements in […]

Read More

Controlling Azure Services In R With AzureR

Hong Ooi announces a new set of packages called AzureR: As background, some of you may remember the AzureSMR package, which was written a few years back as an R interface to Azure. AzureSMR was very successful and gained a significant number of users, but it was never meant to be maintainable in the long term. As […]

Read More

Categories

September 2017
MTWTFSS
« Aug Oct »
 123
45678910
11121314151617
18192021222324
252627282930