Handling Missing Data In Spark

Kevin Feasel

2017-09-06

Spark

Igor Sorokin explains how to implement DataFrameNaFunctions:

Unfortunately, C&P comes in to play, therefore, if at some point in time a default value for ‘trackLength’ is also required, you may end up changing both of these methods. Another disadvantage is that if another similar method, which requires the same default values, is added, code duplication is unavoidable.

A possible solution, which helps to reduce boilerplate, is DataFrameNaFunctions, which is intended to be used for handling missing data: replacing specific values, dropping ‘null’ and ‘NaN’, and setting default values

Read on for an example.

Related Posts

Bayesian Modeling Of Hardware Failure Rates

Sean Owen shows how you can use Bayesian statistical approaches with Spark Streaming, using the example of hard drive failure rates: This data doesn’t arrive all at once, in reality. It arrives in a stream, and so it’s natural to run these kind of queries continuously. This is simple with Apache Spark’s Structured Streaming, and proceeds […]

Read More

Spark Streaming Using DStreams Or DataFrames?

Yaroslav Tkachenko contrasts the two methods for operating on data with Spark Streaming: Spark Streaming went alpha with Spark 0.7.0. It’s based on the idea of discretized streams or DStreams. Each DStream is represented as a sequence of RDDs, so it’s easy to use if you’re coming from low-level RDD-backed batch workloads. DStreams underwent a lot […]

Read More

Categories

September 2017
MTWTFSS
« Aug Oct »
 123
45678910
11121314151617
18192021222324
252627282930