Simpson’s Paradox Explained

Mehdi Daoudi, et al, have a nice explanation of Simpson’s Paradox:

E.H. Simpson first described the phenomenon of Simpson’s paradox in 1951. The actual name “Simpson’s paradox” was introduced by Colin R. Blyth in 1972. Blyth mentioned that:

G.W. Haggstrom pointed out that Simpson’s paradox is the simplest form of the false correlation paradox in which the domain of x is divided into short intervals, on each of which y is a linear function of x with large negative slope, but these short line segments get progressively higher to the right, so that over the whole domain of x, the variable y is practically a linear function of x with large positive slope.

The authors also provide a helpful example with operational metrics, showing how aggregating the data leads to an opposite (and invalid) conclusion.

Related Posts

Probabilities And Poker

Steve Miller has a notebook on 5-card draw probabilities: The population of 5 card draw hands, consisting of 52 choose 5 or 2598960 elements, is pretty straightforward both mathematically and statistically. So of course ever the geek, I just had to attempt to show her how probability and statistics converge. In addition to explaining the […]

Read More

There Is No Easy Button With Predictive Analytics

Scott Mutchler dispels some myths: There are a couple of myths that I see more an more these days.  Like many myths they seem plausible on the surface but experienced data scientist know that the reality is more nuanced (and sadly requires more work). Myths: Deep learning (or Cognitive Analytics) is an easy button.  You […]

Read More

Categories

August 2017
MTWTFSS
« Jul Sep »
 123456
78910111213
14151617181920
21222324252627
28293031