Simpson’s Paradox Explained

Mehdi Daoudi, et al, have a nice explanation of Simpson’s Paradox:

E.H. Simpson first described the phenomenon of Simpson’s paradox in 1951. The actual name “Simpson’s paradox” was introduced by Colin R. Blyth in 1972. Blyth mentioned that:

G.W. Haggstrom pointed out that Simpson’s paradox is the simplest form of the false correlation paradox in which the domain of x is divided into short intervals, on each of which y is a linear function of x with large negative slope, but these short line segments get progressively higher to the right, so that over the whole domain of x, the variable y is practically a linear function of x with large positive slope.

The authors also provide a helpful example with operational metrics, showing how aggregating the data leads to an opposite (and invalid) conclusion.

Related Posts

Biases in Tree-Based Models

Nina Zumel looks at tree-based ensembling models like random forest and gradient boost and shows that they can be biased: In our previous article , we showed that generalized linear models are unbiased, or calibrated: they preserve the conditional expectations and rollups of the training data. A calibrated model is important in many applications, particularly when financial data […]

Read More

Comparing Poisson Regression to Regressing Against Logs

Nina Zumel compares a pair of methods for performing regression when income is the dependent variable: Regressing against the log of the outcome will not be calibrated; however it has the advantage that the resulting model will have lower relative error than a Poisson regression against income. Minimizing relative error is appropriate in situations when […]

Read More

Categories

August 2017
MTWTFSS
« Jul Sep »
 123456
78910111213
14151617181920
21222324252627
28293031