Gradient Boosting In R

Anish Sing Walia walks us through a gradient boosting exercise using R:

An important thing to remember in boosting is that the base learner which is being boosted should not be a complex and complicated learner which has high variance for e.g a neural network with lots of nodes and high weight values.For such learners boosting will have inverse effects.

So I will explain Boosting with respect to decision trees in this tutorial because they can be regarded as weak learners most of the times.We will generate a gradient boosting model.

Click through for more details.  H/T R-Bloggers

Related Posts

Beware Multi-Assignment dplyr::mutate() Statements

John Mount hits on an issue when using dplyr backed by a database in R: Notice the above gives an incorrect result: all of the x_i columns are identical, and all of the y_i columns are identical. I am not saying the above code is in any way desirable (though something like it does arise naturally in certain test […]

Read More

Markov Chains In Python

Sandipan Dey shows off various uses of Markov chains as well as how to create one in Python: Perspective. In the 1948 landmark paper A Mathematical Theory of Communication, Claude Shannon founded the field of information theory and revolutionized the telecommunications industry, laying the groundwork for today’s Information Age. In this paper, Shannon proposed using a Markov chain to […]

Read More


August 2017
« Jul Sep »