Understanding Decision Trees

Ramandeep Kaur explains how decision trees work:

Simply put, a decision tree is a tree in which each branch node represents a choice between a number of alternatives, and each leaf node represents a decision.

It is a type of supervised learning algorithm (having a pre-defined target variable) that is mostly used in classification problems and works for both categorical and continuous input and output variables. It is one of the most widely used and practical methods for Inductive Inference. (Inductive inference is the process of reaching a general conclusion from specific examples.)

Decision trees learn and train itself from given examples and predict for unseen examples.

Click through for an example of implementing the ID3 algorithm and generating a decision tree from a data set.

Related Posts

Building an Image Classifier with PyTorch

Rogier van der Geer shows how you can use PyTorch to build out a Convolutional Neural Network for image classification: The tool that we are going to use to make a classifier is called a convolutional neural network, or CNN. You can find a great explanation of what these are right here on wikipedia. But we […]

Read More

xgboost and Small Numbers of Subtrees

John Mount covers an interesting issue you can run into when using xgboost: While reading Dr. Nina Zumel’s excellent note on bias in common ensemble methods, I ran the examples to see the effects she described (and I think it is very important that she is establishing the issue, prior to discussing mitigation).In doing that I ran into one more […]

Read More


August 2017
« Jul Sep »